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Scientists in NASA’s Space Science Enterprise seek to answer fundamental questions about the origin and 
evolution of life and celestial objects (planets, planetary systems, stars, galaxies, etc.) in the universe. These 
questions are central to both the new NASA vision for the future: “To improve life here, To extend life to there, 
To find life beyond,” and the new NASA mission: “To understand and protect our home planet, To explore the 
Universe and search for life, To inspire the next generation of explorers..., as only NASA can,” as articulated by 
NASA Administrator Sean O’Keefe.

Ames is recognized as a world leader in Astrobiology, the study of life in the universe and the chemical and 
physical forces and adaptations that influence life’s origin, evolution, and destiny. In pursuing our primary mission 
in Astrobiology, Ames performs pioneering basic research and technology development to further fundamental 
knowledge about the origin, evolution, and distribution of life within the context of cosmic processes. For 
example, research and technology development are currently conducted to:

• Study the mechanisms of the origin, evolution, and distribution of life in the universe;

• Determine the abundance and distribution of the biogenic compounds that are conducive to the origin of life;

• Identify locations on bodies within our solar system where conditions conducive to life exist or have existed;

• Explore the other bodies (planets, comets, asteroids) of our solar system;

• Locate planets and planet-forming regions around other stars;

• Study extra-solar matter such as interstellar gas and dust.

Research at ARC implements NASA and Space Science Enterprise goals through four elements dealing with 
Astrophysics, Planetary Systems, Exobiology, and Astrobiology Technology. Since a unifying theme for these 
elements is the origin and evolution of stars, planets, and life, the total research effort is a major thrust of the 
Space Science Enterprise’s Astrobiology program. Astrophysics research addresses Enterprise goals and objectives 
that deal with understanding how the structure in the Universe emerged, the dynamical evolution of galaxies 
and stars, and the exchange of matter and energy among stars and the interstellar medium. Planetary Systems 
research addresses Enterprise goals and objectives that deal with understanding star formation, the evolution and 
distribution of volatile and organic material, the origin and distribution of planetary systems, rings, and primitive 
bodies, and planetary atmosphere evolution. Exobiology research addresses Enterprise goals and objectives that 
deal with understanding the origin, evolution, and distribution of life by conducting research on the cosmic 
history of biogenic compounds, prebiotic evolution, the early evolution of life, computational astrobiology, 
and extreme environments in which living organisms can exist. Astrobiology Technology supports fundamental 
research and the development of advanced technologies in astrobiology as they relate to the exploration of space 
and understanding of life in the universe.

This report highlights accomplishments in the four key research thrusts at Ames that support the goals and 
objectives of the Enterprise: Astrophysics, Planetary Systems, Exobiology, and Astrobiology Technology.

2002–03 Space Science Enterprise Overview
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ASTROPHYSICS

As NASA’s lead in airborne astronomy, scientists at Ames pioneered the field of astrophysics. Study topics range 
from star forming regions and processes to interstellar photochemistry to protoplanetary disks. Understanding 
cosmic processes—the evolution of the universe itself— is a vital part of the Origins initiative.

Ames’ astronomers and astrophysicists utilize a wide variety of methods. Ground-based telescopes such as the Keck 
and Mount Lemmon Observatories, are regularly employed for observations of celestial objects and processes. 
Development continues on the Stratospheric Observatory for Infrared Astronomy (SOFIA), an infrared telescope 
to be carried aboard a Boeing 747 aircraft specially modified for the task. Space-based observations are also made 
through instruments such as the Hubble Space Telescope (HST) and other observatories and missions. Computer 
modeling and laboratory analogs of chemical processes enhance the observational astronomy performed.

Highlighted in this section of the report are a wide variety of accomplishments in astrophysics including:

• Successful modeling of the observed color in icy planetary satellites using mixtures of ice and complex 
organic materials which sheds light on prebiotic organic chemical processes;

• Development of a cryogenic multiplexer for far infrared photoconductor detectors operating at moderate 
backgrounds for instruments for a new generation of large telescopes such as SOFIA;

• Contributions to the concept that Deuterium enrichment in meteorites indicates that organic species made in 
the ISM can survive the transition from a dense cloud through infall onto a planetary surface.

PLANETARY SYSTEMS

Scientists in the Space Science Enterprise are interested in how and where in the universe planets form, and the 
geophysical, geochemical, and atmospheric processes that have occurred over the lifetime of a planet. Further, 
understanding the dynamics between planetary processes and the origin and evolution of life will help us 
understand the distribution of life in the universe.

Highlighted in this section of the report are a wide variety of accomplishments in planetary systems including:

• New models which take into account the scatter of light from grainy surfaces shed new light on the 
composition of Saturn’s rings;

• Theoretical models of particle —gas interactions in turbulent nebula flows helping to explain the abundance 
of Calcium-Aluminum-rich Inclusions (CAIs) in meteorites;

• The PASCAL Mars Scout Mission global network of long-lived landers to characterize the meteorology and 
climate of Mars;

• Theoretical research on star and planet formation conducted via consortium by the Center for Star 
Formation;

• The lessons of brown dwarf detection that can be applied to our search for extra solar planets;

• Novel techniques to detect and characterize large data sets from astronomical surveys identifying galaxy 
clusters without preset assumptions and conditions;
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• Atacama desert in Chile, the best known Mars analog for scientist to perform soil chemistry and mineralogy 
studies in preparation for Mars exploration opportunities.

EXOBIOLOGY

Ames’ Exobiology Program is a key element of NASA’s Astrobiology Initiative and Ames serves as NASA’s lead 
center in exobiology. Research in exobiology at Ames ranges from studying the mechanisms of the origin of 
living systems, to the processes governing the evolution of life, and to the distribution of life on other planets. 
When coupled with Ames’ pioneering research on the dynamics of galaxies, molecular gases and clouds, planetary 
systems, and the solar system, our study of life is facilitated by understanding the cosmic environment within 
which life originates and evolves.

Molecules of exobiological significance are ubiquitous in the universe. It is important to understand the sources 
and interactions of these building blocks and how living systems emerge from prebiotic molecular chaos.

Highlighted in this section of the report are a wide variety of accomplishments in exobiology including:

• Biomarker analysis of ancient sediments associated with Cyanobacterial ecosystems might allow recognition 
of similar source organisms and environmental conditions on other worlds;

• Penning Ionization electron spectroscopy a new analytical technique that requires minimal flight resources 
while providing analyses of volatile complex chemical mixtures of atmospheres and surfaces of planetary 
bodies;

• The formation of protocells—membrane enclosed structures endowed with ubiquitous cellular functions—
was a central step in evolution from inanimate to animate matter.

ASTROBIOLOGY TECHNOLOGY

Ames’ Astrobiology Technology Program supports fundamental research and the development of advanced 
technologies in astrobiology as they relate to the exploration of space and understanding life in the universe.  

Highlighted in this section of the report are a wide variety of accomplishments in astrobiology including: 

• Atmospheric resources for exploration of Mars – has many of the ingredients needed to support human 
exploration missions;

• Nanotechnology – Technology on the scale of molecules, which holds the promise of creating devices smaller;

• The Vapor Phase Catalytic Ammonia Removal system technology represents the next generation in space 
flight water recovery system;

The Division is organizationally divided into four Branches named according to the focus areas of the research 
conducted by the scientists in those Branches: Astrophysics, Planetary Systems, Exobiology, and Astrobiology 
Technology (see Figure 1).
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In 2003, the Division employed 79 civil service personnel, approximately 50 of whom are Ph.D. scientists. This 
core permanent staff is augmented with approximately 125 non-civil servant scientists and technical support 
personnel who are resident in Division facilities through mechanisms such as grants, cooperative agreements, 
support contracts, fellowships, visiting scientist positions, and student internships.

It is common for visiting scientists to spend their summer research or sabbatical time in the Division’s laboratories 
and facilities. Extensive ties are maintained with the academic community through collaborative research programs 
and also through the development of science curricular materials. The Space Science Division is dedicated 
to fostering greater interest in careers in the sciences and provides unique opportunities for training the next 
generation of scientists. Students at all levels—high school, undergraduate, graduate, and post-doctoral—represent 
a significant component of the Division’s on-site research work force. In 2000, approximately 20 National 
Research Council Postdoctoral Fellows and 10 undergraduate students were resident in the Division. Division 
personnel also mentored students in the Astrobiology Academy, a competitive program for college undergraduates 
to participate in hands-on research projects here at Ames Research Center.

In the following section of the Annual Report, the research programs of each Branch are summarized. Within 
each area, several examples of research topics have been selected (from a total of approximately 130 tasks) for more 
detailed description. Following that section is a list of publications authorized by Division personnel with 2002 
and 2003 publication dates. Finally, if a particular project is of interest, the personnel roster that begins on page 
73 may be used to contact individual scientists.

Mark Fonda

Acting Chief, Space Science Division
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Astrophysics 
Branch 

(Code SSA)

Office: 650-604-5528 
Fax: 650-604-6779

Doug Hudgins, Acting Chief 
J. Bregman, Deputy Chief 

L. Sanchez, Sect.

Astrobiology 
Technology Branch 

(Code SSR)

Office: 650-604-5734 
Fax: 650-604-1092

M. Kliss, Chief 
K. Bunn, Acting Asst. Chief

Planetary Systems 
Branch 

(Code SST)

Office: 650-604-5524 
Fax: 650-604-6779

B. Smith, Chief 
Robbins Bell, Acting Dep. Chief 

L. Chandler, Sect.

Exobiology 
Branch 

(Code SSX)

Office: 650-604-5763 
Fax: 650-604-1088

D. Blake, Chief 
L. Mattos, Sect.

Space Science Division 
(Code SS)

Office: 650-604-5029 
Fax: 650-604-6779

M. Fonda, Acting Chief 
S. Owen, Resources Management 

D. Jacobo, Admin. Assistant

Figure 1.
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Scientists in the Astrophysics Branch pursue a wide range of 
laboratory and observational astronomy research. Th e Branch 
is particularly interested in studying the physical and chemical 
properties of astronomical phenomena by observing their radiation 
at infrared (and ultraviolet) wavelengths, beyond the range of 
visible light.

Planets, stars, and the interstellar medium of the Milky Way and 
other galaxies are rich in infrared spectral features which provide 
clues to their origins, physics, chemistry, and evolution. Researchers 
use state-of-the-art laboratories, ground-based, airborne, and 
space-based observatories to conduct their research. Astrophysics 
Branch scientists, engineers, and technicians also play key roles 
in developing new NASA space and airborne missions and 
instruments such as SIRTF, NGST, and SOFIA. Th e primary 
products of the Astrophysics Branch are new observations of 
the universe and new instrumentation developed to make these 
observations.

DOUG HUDGINS

Acting Chief, Astrophysics Branch

Astrophysics Branch
Overview
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FITTING REFLECTION NEBULA SPECTRA 
WITH LABORATORY PAH DATA

Jesse Bregman and Pasquale Temi

The mid-infrared spectra of reflection nebulae are 
dominated by emission from polycyclic aromatic 
hydrocarbon (PAH) molecules. These molecules emit 
radiation in a number of discreet bands, and we can 
identify which molecules are present in reflection 
nebulae by matching the observed bands with those 
of specific PAH molecules measured in the laboratory. 
However, the astronomical spectra are not from a single 
PAH molecule, but rather a mixture of both electrically 
charged and neutral molecules. The charge state of the 
PAHs depends on the density of the nebular gas and 
the intensity of the incident ultraviolet (UV) radia-
tion. Since the UV intensity decreases with increasing 
distance from the star that illuminates the nebulae, it is 
likely that the charge state of the PAHs changes from 
being more highly ionized near the star to more neutral 
at increasing distances from the star.

We have used spatial-spectral image cubes from the 
Infrared Space Observatory (ISO) to study how the 
spectrum of a reflection nebula changes with distance 

from its exciting star, and whether these changes can 
be explained by a change in the fractional ionization 
of PAHs. Our procedure is to first divide the nebula 
into regions that show similar spectra. For the reflec-
tion nebula vdB133, this procedure gave about 5 
distinct regions, each with a somewhat different average 
spectrum. The main spectral difference between these 
regions was the relative strength of the emission bands 
in the 6-8 µm region relative to those in the 10-14 
µm region. Each of the spectra were then fitted with 
a mixture of laboratory spectra of PAHs taken from 
the Ames Astrochemistry Spectral data base. Figure 1 
shows the fit (dashed line and squares) to one of the 
spectral classes in vdB133 (solid line and triangles). A 
non-negative least squares fitting routine is used to fit 
the data with a linear combination of up to 36 labora-
tory spectra. In this example, the routine only used 
15 of the spectra, weighting them so that when added 
together, they would provide the closest fit possible to 
the vdB133 spectrum.

Figure 2 shows the weights that the fitting routine 
calculated for three different spectral classes in vdB133. 
The points with class 5 spectra are closest to the star 
followed by class 2, while class 3 points are farthest 
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Figure 1. The average spectrum of one region in the reflection nebula 
vdB133 is shown as the solid line and triangles overlaid with a spectral fit 
(dashed line, squares) using a linear combination of spectra from the Ames 
Astrochemistry Lab data base.

Figure 2. The contribution to the total intensity of the spectrum of 15 
different neutral (designated n) and ionized (+) PAHs is shown for three 
different regions in vdB133. There is a progression of decreasing amounts 
of ionized PAHs relative to neutral PAHs as the UV radiation intensity 
experienced by the regions decreases.
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from the star. The spectral fits show a progression of 
decreasing amounts of ionized species and greater 
amounts of neutral species progressing from class 5 
to 2 to 3. Whether the individual PAHs that are used 
for the fit actually are present in the reflection nebulae 
is not known, although if the spectral changes can be 
explained by simply trading ionized for neutral species 
of the same molecule, then we might have evidence for 
that PAH being present. Further study using spectra of 
larger PAH molecules and only spectra of the same neu-
tral and ionized species rather than the entire data base 
will perhaps lead to identification of individual PAHs.

ROTATION PROPERTIES OF 
SUN-LIKE PROTOSTARS

Thomas Greene 

We can understand better how the Sun and Earth 
formed by studying very young stars in relatively nearby 
cosmic clouds of gas and dust where stars are form-
ing now. Ames is involved in conducting astronomical 
observations of such young protostars using a powerful 
infrared spectrograph on the Keck Telescope in Hawaii. 
These observations reveal the physical properties of the 
youngest stars ever observed, and they show how these 
stars are interacting with the disks of material around 
them which will eventually form planets.

The temperatures, sizes, and rotation speeds of stars can 
be measured by observing them with spectrographs on 
large telescopes. Spectrographs disperse starlight into its 
constituent spectrum (colors), revealing telltale features 
which are produced by chemical elements in stellar 
atmospheres. Different features appear at different 
temperatures and pressures, and any rotation by the star 
broadens theses features via the Doppler effect. Put-
ting this together allows precise measurement of stellar 
temperatures, sizes, and rotation speeds.

Until now it has been impossible to observe protostars 
– the youngest stars (less than 100,000 years old) which 
are still actively accreting their mass – with spectroscopy. 
This is because protostars form in very heavily obscured 
cosmic clouds of dust and gas where visible light cannot 
penetrate. However, protostars often emit large amounts 
of infrared radiation (wavelengths longer than visible 

light). Spectrographs which are sensitive to infrared light 
have recently been developed, and Ames personnel have 
been such instruments on the world’s largest telescopes 
to measure the physical properties of protostars.

Early results from these studies indicate that protostars 
have temperatures and radii (sizes) which are very simi-
lar to somewhat older young stars (about 1,000,000 
years old) which have stopped building up their masses. 
However, protostars are rotating about 2 –3 times as 
fast as the non-accreting young stars. This comes about 
for two reasons. First, a protostar is surrounded by 
a flattened disk of dust and gas which flow onto the 
central protostar, building up its mass. This material 
rotates faster and faster as it spirals through the disk, 
conserving its angular momentum just as an ice skater 
does when she brings in her arms and spins up. There-
fore this accreting material spins up the protostar also. 
However (and secondly), the protostar is also coupled 
to its disk by strong magnetic fields which originate in 
the protostar (similar to the Sun in sunspot regions). 
This field couples the protostar to a region of its disk 
which is rotating rapidly. Older young stars (which are 
no longer accreting much matter) also have magnetic 
fields, but they are coupled to farther, more slowly 
rotating regions in their disks. The coupling distance 
and the resultant rotation speed are determined by the 
magnetic field strength and the amount of mass which 
is flowing from the disk onto the protostar. This is 
shown in Figure 1.

The rotation speeds of young stars and their disks are 
regulated by their magnetic strengths and the rate at 
which matter stops flowing onto the central stars. It is 
important to study this further because planets form 
in disks around stars, and the distribution of matter in 
disks is influenced by these processes. 

Figure 1. A schematic illustration which shows how stars are coupled to 
their disks for fast rotating protostars (left) and slower rotating young stars 
which have stopped accreting mass (right).



OPTICAL SPECTROSCOPY OF 
COSMIC / INTERSTELLAR ICES

Murthy Gudipati and Lou Allamandola

Water-rich ices, which harbor a wide variety of organic 
and inorganic species, are common throughout the 
Solar System and interstellar molecular clouds, the 
birthplace of stars and planets. The recent interest in 
searching for signs of life in water rich habitable bod-
ies in the Solar System such as Europa and addressing 
questions concerning the abundance of water on Mars 
by the Mars Odyssey Mission exemplify the importance 
of water-rich ices in the cosmos. Chemical reactions in-
duced within these cosmic ices by high-energy photons 
and cosmic rays play a vital role in the chemical evolu-
tion of these icy objects and their coloration. From the 
astrobiological perspective, complex prebiotic organic 
molecules are generated, including amino acids; amphi-
phillic, membrane forming molecules; and functional-
ized polycyclic aromatic hydrocarbons (PAHs).

Luminescence of cosmic ices: Due to the fact that cos-
mic ices are home to such important prebiotic chemis-
try, it is important to understand the primary physical 
and chemical processes that occur in these ices when 
they are exposed to high energy photons and cosmic 
rays. Our laboratory studies show that, upon vacuum 
ultraviolet (VUV) photolysis, transparent cosmic ice 
analogs containing H2O, CH3OH, CO, and NH3 
become strongly colored and exhibit green lumines-
cence. This luminescence originates in the complex 
non-volatile organic molecules that are produced by the 
VUV photons and, upon warm-up to room tempera-
ture, remain even after the simple parent ice molecules 
have evaporated (shown in Figure 1). The ultraviolet-
pumped green emission is an order of magnitude more 
intense at cryogenic temperatures (15 K) than at room 
temperature. Thus, very cold icy cosmic objects that 
receive considerable amount of high energy photons or 
cosmic rays should show this green emission. The types 
of objects which can exhibit this induced emission 
include comets, planets and their satellites, outer Solar 
System objects and interstellar ices. As an example, 
these studies have been used to reinterpret the reflec-
tion spectrum of the leading side of Iapetus, a moon of 
Saturn as follows.

Figure 2: Reflection spectrum of the leading side of Iapetus (jagged solid 
line), fitted with a straight baseline (dashed line) to represent overall slope 
of the data. Addition of the ultraviolet pumped emission of the cosmic ice 
residue to the straight line results in a nice fit with the observed albedo 
(thick solid line).

Figure 1: Temperature dependent luminescence from VUV-processed cosmic 
ice (top) and its residue (bottom) when excited with 380 nm light. The 
luminescence intensity increases with decreasing temperature.

10
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It has been long known that Iapetus exhibits an extreme 
dichotomy in the amount of sunlight reflected from 
it’s leading and trailing hemisphere. The dark, leading 
hemisphere, “reflects” less than 10% of the incident 
sunlight (albedo < 10%) while the bright, trailing 
hemisphere has an apparent enhanced “reflection” 
of ~50% (albedo ~50%). At visual and near-infrared 
wavelengths (~0.3–1.0 mm) the spectrum of the lead-
ing hemisphere is distinctly red with a weak and broad 
reflectance minimum near 0.67 mm. The broad feature 
centered near 0.6 mm might arise from luminescence 
of materials similar to the non-volatile residues men-
tioned above. Addition of the emission spectrum of 
cosmic ice residue, appropriately scaled, to the straight 
baseline representing the continuum color of Iapetus 
resulted in surprisingly good fit with the observed 
albedo, as shown in Figure 2.

FROM GROUND TO SPACE - NEW RESULTS 
WITH AMES INTERSTELLAR SIMULATION 
CHAMBER: CAVITY RING DOWN SPECTROS-
COPY OF INTERSTELLAR ANALOGS

Farid Salama, Ludovic Biennier, Jerome Remy, Robert 
Walker, Manish Gupta, and Anthony O’Keefe

New results have been obtained using Ames Interstel-
lar Simulation Chamber (ISC) allowing for the first 
time to measure the spectral signature of large interstel-
lar carbon molecules analogs and to accurately model 
the “cold” plasma that is generated in this unique 
astrophysical environment. The ISC facility has been 
developed to directly simulate gaseous molecules and 
ions at the low temperature and pressure conditions of 
interstellar space. This laboratory facility -that is unique 
within NASA- combines the techniques of Supersonic 
Free-Jet Expansion with the techniques of Cavity 
Ring Down Spectroscopy. The principle objective is to 
determine the spectroscopic properties of large inter-
stellar aromatic molecules and ions under controlled 
conditions that precisely mimic interstellar conditions. 
The aim of this research is to provide quantitative 
information to analyze astronomical spectra in support 
of NASA’s Space Science and Astrobiology missions, 
including data taken with the Hubble Space Telescope. 

Understanding the origin, physical properties, and 
distribution of the most complex organic compounds 

in the universe is a central goal of Astrophysics and 
Astrobiology. To achieve this requires generating and 
maintaining large carbon-containing molecules and 
ions under interstellar-like conditions while simultane-
ously measuring their spectra under these conditions 
(i.e., in the gas phase at very low densities and at very 
low temperature). This has been accomplished by com-
bining four advanced techniques:  free supersonic jet 
expansion, low-temperature plasma formation and the 
ultrasensitive techniques of cavity ring down spectros-
copy and multiplex integrated cavity output spectros-
copy (ICOS). The ISC combines a pulsed-discharge, 
supersonic slit jet source mounted in a high-flow 
vacuum chamber with a ringdown cavity (see Figure 
1). A beam of carrier gas (argon) seeded with polycyclic 
aromatic hydrocarbon molecules (PAHs) is expanded in 
the gas phase into the cavity ring down chamber. When 
the expanding beam is exposed to a high-voltage ion-
izing electronic discharge, a “cold” plasma is generated 
leading to the formation of positively charged ions that 
are characterized by very low, interstellar-like, rotational 
and vibrational temperatures (temperatures of the order 
of 10 and 100 K respectively are achieved this way). We 
have characterized the cold plasma as a restricted glow 
discharge. Recording the cavity ring down signal is a 

Figure 1: The figure shows Ames Interstellar Simulation Chamber (ISC). 
The physical conditions maintained inside the chamber approach interstellar 
conditions. 



direct measurement of the absolute absorption by the 
seeding molecules and ions. Varying the gas pressure 
and the discharge voltage in the chamber also leads to 
the formation of nano-sized carbon particles and offers 
a highly sensitive way to trace the formation process 
of solid particles out of their molecular precursors (or 
“building blocks”). The results are illustrated in Figure 
2 that shows the ICOS spectrum of the PAH acenaph-
thene ion (C12H10+). This unique experimental facil-
ity has been developed in collaboration with Los Gatos 
Research through a Small Business Innovative Research 
(SBIR) contract. 

The data shown in Figure 2 can now be used to analyze 
the spectral signatures seen in astronomical spectra and 
to derive key information on the nature of the interstel-
lar medium. For example, the absorption band of the 
PAH ion C12H10+ shown in Figure 2 can be directly 
compared to the absorption spectrum of the diffuse in-
terstellar bands (DIBs). These bands that contribute to 
the global interstellar extinction were discovered eighty 
years ago and remain an enigma to this day. Figure 2: The multiplex ICOS absorption spectrum of the acenaphthene 

cation (C12H10+) measured for the first time in the gas phase under simu-
lated interstellar space conditions. The spectrum is obtained when an argon 
free jet expansion seeded with acenaphthene is exposed to a high-voltage 
discharge. 
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For the first time, the absorption spectrum of large 
organic molecules and ions can be measured up to 
nanometer-sized species (nanoparticles) under condi-
tions that mimic entirely the interstellar conditions. 
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Th e Astrobiology Technology Branch supports fundamental 
research and the development of advanced technologies in 
astrobiology as they relate to the exploration of space and 
understanding life in the universe. Current branch eff orts 
encompass research and technology development for advanced 
life support, utilization of planetary resources, and astrobiology. 
Advanced Life Support focused research is directed primarily at 
physicochemical processes for use in regenerative life support 
systems required for future human missions and includes 
atmosphere revitalization, water recovery, waste processing/
resource recovery, and systems modeling, analysis and controls 
associated with integrated subsystems operation. In-Situ Resource 
Utilization (ISRU) technologies will become increasingly important 
on every Mars lander between 2003 and a human mission to 
Mars. Th e branch focus is on the development of technologies 
for Mars atmosphere acquisition, buff er gas production, and 
CO2 compression. Research and technology development for 
astrobiology includes understanding the physical and chemical 
limits to which life has adapted on Earth, the molecular adaptations 
that have allowed living systems to inhabit extreme environ-
ments, and the application of this knowledge to biotechnology, 
nanotechnology, and planetary protection. Researchers in the 
branch also develop fl ight experiments and associated hardware for 
shuttle, ISS, and unmanned NASA missions.

Mark H. Kliss

Branch Chief, Astrobiology Technology Branch

Astrobiology Technology Branch 
Overview

Branch Chief, Astrobiology Technology Branch
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CLEAN INCINERATION FOR 
SPACE MISSIONS

John W. Fisher and Suresh Pisharody

One of the research objectives at NASA Ames Research 
Center is the development of solid waste processing 
technologies for long duration exploration missions. A 
major part of this research effort entails the recovery of 
resources from life support wastes, such as the recovery 
of carbon dioxide and water from waste biomass via 
incineration. Carbon dioxide and water can be used as 
part of a regenerative life support system to grow plants 
for food. One of the central problems associated with 
incineration is the production of undesirable or toxic 
byproducts of combustion. Ames has developed an in-
cineration flue gas cleanup system that allows use of the 
carbon dioxide in a plant growth system and that allows 
release of the remainder of the clean flue gas back to the 
crew cabin.

As space missions increase in duration, there will be an 
increased need to transition from life support systems 
using stored life support materials to life support sys-
tems using recycled life support materials. For instance, 
for short duration missions food can be stored, how-
ever, for missions lasting several years, food will need 
to be provided from a number of possible sources. One 
viable source is a plant growth chamber. Growing food 
in space will require recycling waste materials for the 
raw materials necessary for plant growth: carbon diox-
ide, water, and nutrients. Incineration offers a method 
of converting waste materials such as inedible biomass 
(the part of a plant that can not be eaten) back into 
carbon dioxide, water, and nutrients (ash).

The process of combustion of biomass in an incinerator 
operates in a way similar to the combustion of wood in 
a fireplace—the biomass is almost completely oxidized 
to gaseous carbon dioxide and water vapor, and only a 
small residue of inorganic substances (ash) is left. Even 
in the best of combustors, however, some unoxidized 
material remains, and toxic byproducts and/or contam-
inants such as nitrogen and sulfur oxides are formed. 

In recent years, research at Ames has focused on de-
veloping methods to eliminate the undesirable com-

bustion byproducts. One approach has been to use 
reductive catalytic systems to convert the nitrogen and 
sulfur oxides to nitrogen and elemental sulfur, innocu-
ous materials at room temperature. Oxidative catalysts 
can then oxidize the remaining hydrocarbon contami-
nants to very low levels. In collaboration with outside 
university and corporate organizations, an integrated 
incineration system has been developed and tested 
that utilizes a fluidized-bed combustor followed by a 
catalytic cleanup system. In the past year, this system 
has demonstrated the ability to burn inedible biomass 
and produce a very clean exit flue gas. The concentra-
tion of contaminants in the gas exiting the incinerator 
is generally less than a few parts per million. Except for 
the carbon dioxide, which is toxic to humans at high 
concentrations, the exit stream from the incinerator is 
able to meet the Space Maximum Allowable Contami-
nant (SMAC) standards for clean air in a spacecraft. 

A second research effort at Ames is investigating the use 
of waste material to prepare the flue gas cleanup system. 
A pyrolytic process converts inedible biomass to char, 
and the char is then converted to activated carbon. The 
activated carbon is used to remove contaminants such 
as nitrogen oxide and sulfur dioxide from the incinera-
tor flue gas by adsorption followed by chemical reaction 
with the carbon. The contaminants are thus converted 
to innocuous nitrogen gas and elemental sulfur. In the 
past year, the process of producing activated carbon 
from wheat straw has been demonstrated, and the 
activated carbon produced from wheat straw has been 
used to reduce the concentration of nitrogen oxides in 
incinerator flue gas from 300 ppm (parts per million) 
to less than 1 ppm. This meets the SMAC limits within 
the crew cabin.

With the development of energy efficient, optimized 
incineration and flue gas cleanup systems, NASA will 
have the technology necessary to “close the loop” on 
carbon. Ultimately, carbon will move within the system 
from plant to person and/or incinerator and back to the 
plant without ever becoming a stored waste, achieving 
a significant milestone in the development of advanced 
life support systems which approach self-sufficiency.
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ATMOSPHERIC RESOURCES FOR 
EXPLORATION OF MARS

John Finn, Dave Affleck, Lila Mulloth

The atmosphere of Mars has many of the ingredients 
needed to support human exploration missions. It 
can be “mined” and processed to produce oxygen and 
buffer gas for breathing (used to dilute oxygen). With 
lightweight hydrogen transported from Earth, or using 
water found in local deposits as a hydrogen source, 
storable methane rocket fuel can also be produced. The 
use of local materials, called ISRU (for in situ resource 
utilization), is an essential strategy for a long-term 
human presence on Mars from the standpoints of self-
sufficiency, safety, and cost. It is a key cost-reduction 
element of NASA’s Strategic Plan.

The atmosphere of Mars is roughly 95% carbon diox-
ide, 3% nitrogen, and 2% argon. There are also trace 
amounts of other gases. Carbon dioxide is the resource 
for oxygen and also provides the carbon that can be 
used in methane production. The production of these 
gases will likely dominate any early Mars manufactur-
ing plant because of the quantity of materials needed to 
return samples or humans to orbit or to Earth. How-
ever, it is important to recognize that buffer gas also 
represents a considerable launch mass, estimated on the 
order of two to three tons for a human mission (mainly 
due to airlock activity). With the proper selection of gas 
acquisition and processing technology, a more optimal 
ISRU plant can be designed that will provide all these 
resources with minimal mass and power consumption.

For example, carbon dioxide must be acquired from 
the Mars atmosphere, purified, and pressurized in 
order to be useful in a propellant production plant. 
Buffer gas is a potential by-product of the purification 
process. NASA Ames developed a process whereby the 
small amount of nitrogen and argon present in the 
atmosphere are efficiently separated from the carbon 
dioxide during an adsorption compression process (see 
figure 1). Carbon dioxide adsorbs in the first bed, while 
nitrogen and argon pass through and are collected in a 
separate adsorption bed. When the first bed is heated, 
carbon dioxide is driven off at elevated pressure. Simi-
larly, the nitrogen and argon are driven off at pressure 
when the second bed is heated. Such temperature-swing 

adsorption compression and separation processes are 
highly efficient and are expected to work well on the 
cold Martian surface. Being virtually solid-state, they 
do not suffer the wear and reliability problems associ-
ated with operating mechanical pumps in that hostile 
environment.

ROTATING-DISK ANALYTICAL 
SYSTEM (R-DAS)

Michael Flynn and Bruce Borchers

One of the main limitations in increasing the scientific 
return from fundamental biology and life sciences 
experiments onboard the International Space Station 
(ISS) is the inability to conduct a variety of biological 
and analytical assays in flight. The Rotating-Disk 
Analytical System (R-DAS) is an automated analytical/
cell culture laboratory that has been developed as a 
biotech and chemical analytical instrument for use on 
ISS and other space flight platforms. R-DAS uses a 
microfluidics rotating disk and predetermined spinning 
profiles to accomplish complex fluid management tasks. 
Analysis is accomplished through the use of a custom 
optical imaging system. The instrument can conduct 

Figure 1. Flow diagram of an adsorption-based CO2 compression and 
N2 / Ar separation device for the Mars atmosphere.
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a wide range of protocols on orbit with onboard 1-g 
and micro-g controls without the need for the ISS 
centrifuge. 

The system has a variety of unique design features such 
as automated microgravity environment assays and 
optical detection schemes which support natural and 
induced fluorescence. It is capable of conducting ca-
lorimetric, spectral, and image analysis. It will provide 
in-flight 1-g control studies without the need for the 
ISS centrifuge. It uses sealed and disposable sample 
disks which are pre-configured with all necessary 
reagents. The use of centrifugal force to control fluid 
flow minimizes acceleration velocities and shear forces 
and creates an environment which is insensitive to two-
phase microgravity flow restrictions thereby simplifying 
sample preparation and introduction procedures.

The system is designed to fit into a double mid-deck 
locker (1/4 Space Station rack). It is designed to remain 
on orbit with only the disks being transported back and 
forth to orbit. A disk storage/holding system will be 
provided in order to allow for multiple disks processing. 
Operational protocols can be written on CD disks and 
experimental results can be re-written on the CD disks.

Ames Research Center has recently completed a rapid 
system prototype development effort. This six-month 

effort has resulted in the development of the prototype 
R-DAS system. The prototype is shown in Figure 1. 
This system is fully automated and uses a single micro-
fluidic disk (single assay) with six parallel flow paths. 
The disk is shown in Figure 2. A florescent microscope 
is incorporated into the design in order to image sam-
ples and provide complete image analysis. The system is 
portable, having dimensions of only 8 in. x 20 in. x 20 
in. The prototype was completed on January 1, 2002, 
and is currently being validated against standard labora-
tory protocols. In order to provide a first demonstration 
assay, a unique microfluidic disk was fabricated using 
the Molecular Probes Live/Dead stain assay. 

Live/Dead Bacterial Viability Kit stains are based on the 
use of SYTO 9 green fluorescent nucleic acid stain and 
the propidium iodide red-fluorescent stain. Live/Dead 
kits are also available for animal cells and yeast assays, 
both of which will work in the existing R-DAS disk 
system. 

Initial test results from the prototype system Live/Dead 
assay are encouraging. In addition, the system design 
is such that R-DAS is readily adaptable to a variety 
of other assays/disks being evaluated. With further 
development, R-DAS promises to usher in previously 
unavailable biological laboratory analysis capability 
onboard ISS and other future space flight platforms.

Figure 2. R-DAS Microfluidic Disk.Figure 1. R-DAS Instrument 
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PROTEIN NANOTECHNOLOGY

Jonathan Trent, Andrew McMillan, Chad Paavola

In support of NASA’s efforts to improve mission 
success, there is a growing need for the development 
of smaller, stronger and “smarter” scientific probes 
compatible with space exploration. The necessary 
breakthroughs in this area may well be achieved in the 
revolutionary field of nanotechnology. This is technol-
ogy on the scale of molecules, which holds the promise 
of creating devices smaller and more efficient than 
anything currently available. Although a great deal of 
exciting research is developing around carbon nano-
tubes-based nanotechnology, investigators at NASA 
Ames Research Center are also exploring biologically 
inspired nanotechnology.

The biological “unit,” the living cell, may be consid-
ered the ultimate nano-scale device. Cells, which are 
constructed of nano-scale components, are extremely 
sensitive, highly efficient environmental sensors capable 
of rapid self-assembly, flawless self-repair, and adaptive 
self-improvement; not to mention their potential for 
nearly unlimited self-replicate. Ames is focusing on a 
major component of all cells (proteins) that are capable 
of self-assembling into highly ordered structures. A pro-
tein known as HSP60 is currently being studied that 
spontaneously forms nano-scale ring structures (Figure 
1A, end view; B, side view), which can be induced to 
form chains (Figure 1C) or filaments (Figure 1D). 

By using thermostable HSP60s, highly efficient meth-
ods have been developed for purifying large quantities 
of these proteins and by using the “tools” of molecular 
biology , their composition and structure-forming 
capabilities are being currently modified. 

Recently, progress has been made in evolving the 
HSP60 into a structural subunit that can be manipu-
lated in such a way as to utilize it for the formation of 
ordered arrays. Ordered arrays of metals are of interest 
in the semiconductor engineering community for the 
fabrication of devices that can be addressed and further 
assembled into logical circuits. To this end, a portion of 
the wild-type HSP60 subunit identified as contributing 
to the formation of filaments, or end-on structures, has 
been removed at the genetic level. The removal of this 
region of DNA directs the expression of a protein inca-
pable of organizing into filaments; however, it possesses 
the ability to crystallize in two dimensions in a highly 
ordered hexagonally packed array (Figure 1E). This or-
dered array is being used to direct deposition of metals 

Figure 1: Protein rings (A end view, and B side view), chains of rings (C), 
and bundles of chains (D) that can be used in nanotechnology. Two-dimen-
sional crystals (E) of mutated rings used for metal array formation.

Figure 2: Mutant forms of HSP60 possess genetically engineered chemical 
reactivity at specific sites on the rings (A, green dots). These rings are 
crystallized (A) in two dimensions forming a highly ordered template. The 
template is applied to the surface of a substrate (B), and metals are bound 
that specifically attach to defined sites throughout the crystal (C). Finally, 
the template is removed (D), and the ordered array remains bound to the 
substrate.



18

by templating. This process takes advantage of both the 
propensity of the modified subunit to self-assemble into 
a highly ordered array and the ability to site-specifically 
functionalize the protein. Using this approach, specific-
ity for metals can be engineered into the protein that 
will subsequently localize the metals at defined inter-
vals along the protein and hence into an ordered array 
(Figure 2). A simple removal of the protein leaves the 
ordered array of metal on the substrate with nanometer 
scale feature resolution.

PROTEINS AS TOOLS FOR 
BIONANOTECHNOLOGY

Jonathan Trent, Andrew McMillan, and Chad Paavola

NASA’s efforts to optimize space exploration are 
enhanced by the development of smaller and more 
powerful sensors and information storage and pro-
cessing devices. These devices, which depend on the 
controlled organization of materials into addressable 
arrays, are currently being fabricated primarily by 
lithographic techniques. While these techniques have 
been refined to create devices on the micron scale, 
there are compelling reasons to produce nanoscale de-
vices. In addition to the increased packing density, on 
the nanoscale there are quantum effects that rely on 
the behavior of single electrons. These quantum effects 
open new horizons in the design and development of 
sensors and electronic devices that will have a signifi-
cant impact on the performance of future NASA space 
probes.

Controlled assembly of materials on the nanometer 
scale, however, presents a formidable problem. It is be-
yond the theoretical and practical limits of convention-
al lithographic patterning processes and while alternate 
techniques, such as X-ray and ion beam lithography 
have the resolution to reach the nano-scale, they are 
currently prohibitively expensive. We are developing a 
radical new technique for patterning materials on the 
nanoscale using proteins.

Proteins are self-assembling biomolecules that naturally 
form highly ordered structures and that can be modi-
fied and manipulated by genetic engineering. Genetic 
engineering transforms natural proteins into “nano-

agents” that are capable of recognizing, binding, and 
ordering nanoscale materials. 

NASA Ames has demonstrated the feasibility of using 
proteins as nano-agents with a class of proteins called 
HSP60s. These proteins naturally associate to form 
rings 17 nanometers in diameter called chaperonins. 
Chaperonins can be induced to form higher order 
structures such as chains or two- and three- dimen-
sional crystals. By genetically engineering HSP60s to 
bind metal or semiconductor quantum dots, chapero-
nins can create useful nanoscale devices such as wires, 
waveguides, and quantum dot arrays. Two-dimensional 
crystals of chaperonins have been used to produce 
two-dimensional arrays of quantum dots as shown in 
Figure 1 adapted from a Nature Materials article. The 
properties of these arrays and the construction of other 
structures using chaperonins are now under investiga-
tion. The knowledge gained from these investigations 
combined with new techniques in genetic engineering 
represent a formidable tool for nanotechnology. NASA 
is helping to explore these new frontiers that will ulti-
mately play a key role in future NASA missions.

EXPLOITING THE PHYSICO-CHEMICAL 
PROPERTIES OF SINGLE-WALLED CARBON 
NANOTUBES FOR ADVANCED LIFE SUPPORT 
APPLICATIONS

John Fisher, Martin Cinke, K. Wignarajah, Jing Li, Suresh 
Pisharody, Harry Partridge

NASA Ames is investigating the potential applications 
of single-walled carbon nanotubes for trace contami-
nation control in future manned space missions. A 
number of solid waste treatment technologies are under 
investigation for the function of resource recovery 
during long duration manned missions. Inherent to 
many of these candidate technologies (for example, 
incineration) is the production of undesirable by-prod-
ucts such as nitrogen oxides, carbon monoxide, trace 
hydrocarbons, and sulfur dioxide. The success of waste 
processing resource recovery technologies thus depends 
on the ability of gas clean-up systems to efficiently 
remove these contaminants from regenerative life sup-
port systems with minimal use of expendables. Existing 
industrial processes employed to reduce byproducts 
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from effluent gases typically require the use of expend-
able materials such as ammonia, carbon monoxide or 
hydrocarbons in the presence of a catalyst. 

Single-walled carbon nanotubes (SWCNT) are excel-
lent candidates as catalysts and catalyst support materi-
als for trace contaminant control. They possess highly 
selective adsorptive properties and high surface areas. 
Based on theoretical predictions with proper control 
of tube spacing and tube diameter, Brunauer-Emmett-
Teller (BET) surface areas approaching 3200 squared 
meters per gram are possible for the bulk material 
(opened tubes), which includes a significant contribu-
tion from the interior pores (endohedral surface) and 
channels approaching 1500 squared meters per gram. 

To date, carbon nanotubes have been shown to be very 
effective catalyst supports for the conversion of nitrogen 
oxides to nitrogen and oxygen without the need for any 
exogenous consumables such as carbon monoxide and 
ammonia. Catalyst impregnation of single-walled nano-
tubes is necessary to enhance the conversion efficiency 
of the trace contaminants and to reduce the conversion 
temperature. Rhodium impregnation and characteriza-
tion of SWCNT’s has been studied in the past year. 
Impregnation of the single-walled nanotubes with 
metals such as Palladium, Platinum, Silver, Ruthenium 

and Niobium are being tested for removal of spacecraft 
cabin air trace contaminants. 

The biggest challenge to using nanocarbons is to de-
velop high purity material. The NASA-Ames research 
team has been working with nanocarbons produced by 
iron-catalyzed gas phase disproportionation of carbon 
monoxide (HiPCO process). The raw nanocarbons 
produced by this process have a high iron content 
(30%) that needs to be significantly reduced for it to be 
of value for catalyst impregnation and pollution control 
applications. This was performed successfully with 
the iron content being reduced to less than 1% - the 
lowest reported to-date. Surface characterization of the 
nanocarbons confirmed the purity and also showed that 
we had achieved BET surface areas of close to 1600 
squared meters per gram. (Cinke et al, Chem. Phys. 
Letters (2002): volume 365 pp 69–74)

DEVELOPMENT OF THE VAPOR PHASE 
CATALYTIC AMMONIA REMOVAL PROCESS

Michael Flynn 

Water is the single largest resupply requirement associ-
ated with human space flight, accounting for 87% by 
mass of an astronaut’s daily metabolic requirement. The 
Vapor Phase Catalytic Ammonia Removal (VPCAR) sys-
tem technology represents the next generation in space 
flight water recovery system. It was designed to accept a 
combined waste stream (urine, condensate, and hygiene 
water) and produce potable water in a single step. This 
compact, module system requires no resupply or main-
tenance and can fit into a volume comparable to a single 
Space Station rack. NASA Ames recently completed 
the development of a human-rated, test version of the 
VPCAR technology, as shown in Figure 1.

The VPCAR system achieves a mass metric almost an 
order of magnitude better than the current state-of-
the-art water processors. (Mass metric is a technique 
used to compare candidate technologies by reducing all 
performance parameters into a single equivalent launch 
mass metric.) Incorporating the VPCAR technology 
into human space flight missions could potentially 
save hundreds of millions of dollars in resupply costs, 
depending on the specific mission scenario. 

Figure 1. (Top) Genetically engineered proteins bind gold nanoparticles and 
self-assemble into chaperonins. (Bottom), Chaperonins with nanoparticles 
held within the pores self assemble into ordered arrays. The distance 
between each dot, or feature, within the array is many times smaller 
than the distance between features in devices created using conventional 
lithography.
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VPCAR is a two-step distillation based water proces-
sor that uses of a wiped-film rotating-disk (WFRD) 
vacuum evaporator to volatilize water, small molecu-
lar weight organics, and ammonia. The vapor stream 
is then oxidized in a vapor phase catalytic reactor to 
destroy any contaminants. The VPCAR system uses 
two catalytic beds to oxidize contaminants and decom-
pose any nitrous oxide produced in the first bed. The 
first catalytic bed oxidizes organics to carbon dioxide 
and water and ammonia to nitrous oxide and water. 
This oxidation reactor contains 1 percent platinum 
on alumina pellets and operates at about 523 Kelvin. 
The second catalytic bed reduces the nitrous oxide to 
nitrogen and oxygen. This reduction catalyst contains 
0.5% ruthenium on alumina pellets and operates at 
about 723 Kelvin. The reactor and distillation functions 
occur in a single modular process step. The process 
achieves between 97-98 percent water recovery and has 
no scheduled maintenance or resupply requirements for 
a minimum of three years.

The VPCAR activity is significant in that it represents 
the development of the next generation of life support 
water recovery technology. Ames Research Center’s 
involvement has spanned from the first principle 
definition to the model development, bench-scale and 
lab-scale prototype development, and most recently, 
contract management of the development of a human-
rated version of the technology for evaluation for space 
flight application.

TEMPERATURE-SWING ADSORPTION COM-
PRESSOR FOR A CLOSED-LOOP AIR REVITAL-
IZATION SYSTEM

Lila Mulloth

Living in space beyond low Earth orbit for extended 
durations will be possible only in a self-sustaining 
environment where air, water and food are regener-
ated. Closing the air loop is one of the important 
steps among the life support processes. A closed-loop 
air revitalization system (Figure 1) requires continu-
ous removal of carbon dioxide from the breathable air 
and an oxygen recovery system to conserve the oxygen 
from the waste carbon dioxide. Production of oxygen 
from carbon dioxide is typically achieved by reacting 
carbon dioxide with hydrogen in a Sabatier reactor. An 
interface device, such as a compressor, is required to 
link the carbon dioxide removal system and the Saba-
tier reactor. Closing the air loop will also significantly 
reduce the cost associated with the water resupply from 
Earth. NASA Ames has developed and tested a solid-
state compressor that can interface the carbon dioxide 
removal assembly and the Sabatier reactor for air-loop 
closure in a spacecraft.

The air revitalization system of the International Space 
Station (ISS) operates in an open loop mode and relies 
on the resupply of oxygen and other consumables from 
Earth for the life support of astronauts. Currently, 
the excess carbon dioxide that is being removed from 
the cabin air and the hydrogen that is produced as a 
byproduct during the water electrolysis for oxygen pro-
duction are being vented to space. The Carbon Dioxide 
Removal Assembly (CDRA) of ISS does not have the 
provision for supplying the waste carbon dioxide to a 
reduction unit at the required pressure. An additional 
compressor and a storage device is required to remove 
the carbon dioxide from the CDRA at a low-pressure, 
store it, and supply it to the Sabatier reactor at a higher 
pressure as needed. The need to close the air loop is 
critical in long-duration transit vehicles and future 
space habitats where the resupply of consumables may 
not be practical. 

NASA Ames is developing a Temperature-Swing Ad-
sorption Compressor (TSAC) to close the air loop. This 
compressor will perform the functions of a vacuum 

Figure 1. VPCAR under construction.
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pump, compressor, and storage device for the acqui-
sition and delivery of the CO2 from CDRA to the 
Sabatier reactor. Unlike a mechanical compressor, the 
TSAC is a solid-state device that offers quiet and vibra-
tion-free operation, long life, and high reliability that 
are essential for long duration space voyages. In addi-
tion, if waste heat is available, the TSAC can operate 
with minimum or no electrical power. The TSAC has a 
direct application in closing the air loop in the ISS life 
support system and is a highly promising technology 
for the future space habitats and long-duration plan-
etary and transit vehicles.

The TSAC contains two identical cylinders that operate 
in a cyclical manner. One cylinder acts as a “vacuum 
pump” that synchronizes with the carbon dioxide 
removal system while the other acts as a “compressor” 
that synchronizes with the Sabatier reactor to ensure 

uninterrupted operation of the air revitalization system 
components. Low-pressure carbon dioxide from the 
CDRA is adsorbed on the TSAC chamber that contains 
cold and regenerated sorbent. The sorbent chamber 
stores the carbon dioxide until the Sabatier reactor is 
ready to accept it. The sorbent in the closed chamber is 
then heated in order to drive the carbon dioxide off the 
sorbent and thereby increase the pressure to the desired 
set point. The compressed gas flows into the Sabatier 
reactor at a controlled rate. Coolant from the space-
craft’s thermal control system cools the cylinder back to 
its initial state, and the process is repeated. A prototype 
of the TSAC (Figure 2) was built at Ames and success-
fully tested with a flight-like CDRA at NASA Marshall 
Space Flight Center. The tests demonstrated the ability 
of TSAC to operate as an efficient interface device for 
the CDRA and Sabatier reactor. 

Figure 1. Schematic of closed- loop air revitalization system for a spacecraft.

Figure 2. TSAC prototype developed at NASA Ames Research Center.
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Th e overall research eff ort in the Planetary Systems Branch is 
directed at acquiring new, fundamental knowledge about the 
origins of stars and planetary systems and life itself. Th ese studies 
are an integral part of NASA’s overarching thrust in Astrobiology. 
Principal research programs include studies of the formation of 
stars and planets and the early history of the solar system, studies of 
planetary atmospheres and climate, investigation of the dynamics 
of planetary disks and rings, work on problems associated with the 
Martian surface including resource utilization and environments for 
the origin of life, and other programs (chiefl y theoretical) involving 
stellar and planetary dynamics, radiative processes in stars and the 
interstellar medium, and investigation of the physical and chemical 
conditions in molecular clouds and star formation regions. 
Scientists in the branch also support NASA fl ight missions through 
participation on various mission science teams. Th e primary 
product of the Branch is new knowledge about the nature of the 
universe, presented and published in the open literature.

Bruce F. Smith

Chief, Planetary Systems Branch

Planetary Systems Branch
Overview
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KEPLER MISSION TO FIND EARTH-SIZE 
PLANETS: A STATUS REPORT

William J. Borucki, David Koch, Timothy Brown, Gibor 
Basri, Alan Boss, Donald Brownlee, John Caldwell, William 
Cochran, Edward Dunham, Andrea Dupree, Edna DeVore, 
John Geary, Ronald Gilliland, Alan Gould, Steve Howell, 
Jon Jenkins, Yoji Kondo, David Latham, Jack Lissauer, 
Geoff Marcy, David Morrison, Tobias Owen, Harold Reit-
sema, Dmiter Sasselov, and Jill Tarter

Small rocky planets at orbital distances from 0.9 to 1.2 
AU are more likely to harbor life than the giant gas 
planets that are now being discovered with the Dop-
pler-velocity technique. Technology based on transit 
photometry can find smaller, Earth-like planets that are a 
factor of several hundred times less massive than Jupiter-
like planets. The Kepler Mission is designed to discover 
hundreds of Earth-size planets in and near the habitable 
zone (HZ) around a wide variety of stars. It was selected 
as Discovery Mission #10 in December 2001.

The instrument is a wide field-of-view (FOV) differen-
tial photometer with a 100 square degree field of view 
that continuously and simultaneously monitors the 
brightness of 100,000 main-sequence stars with suf-
ficient precision to detect transits by Earth-size planets 
orbiting G2 dwarfs. The brightness range of target stars 
is from visual magnitude 9 through 14. The photom-
eter is based on a modified Schmidt telescope design 
that includes field flatteners near the focal plane. Figure 
1 is a schematic diagram of the photometer. 

Approximately 100,000 target stars must be monitored 
to get a statistically meaningful estimate of the frequen-
cy of terrestrial planets in the HZ of solar-like stars. 
In particular even if every such star has such a planet, 
only about 500 planets will be discovered because the 
geometrical probability that the planets’ orbit will be 
aligned well enough to show transits is only about 
0.5%. In the 100 sq degree Kepler FOV, there are ap-
proximately 450,000 stars brighter than 15th magni-
tude. To find 100,000 useful targets, all of these must 
be classified with respect to spectral type and luminos-
ity class because no catalogs with this information 
exist. This is a formidable task that must be completed 
before launch. Hence three small studies have been 
funded this year to find the quickest and least expen-

sive method. Two of the studies will use multi-band 
photometry and ground-based telescopes with large 
fields of view. The third study will use a combination 
of multi-fiber spectroscopy at a 6.5 m telescope and the 
results of recently published catalogs of infrared stellar 
measurements and reduced proper motions to identify 
and eliminate those stars of little interest. Results of the 
three studies are due in December. 

Phase B work started in March of 2002. Since then a 
new management team from the NASA Jet Propulsion 
Lab (JPL) was chosen to provide overall mission man-
agement. The JPL team members have been smoothly 
integrated with those at NASA Ames and the Ball 
Aerospace & Technology Corporation. Their addition 
greatly strengthens the Kepler Mission by providing 
great depth in mission management and engineering. 

In the fall of 2002, 30 CCD detectors were ordered 
from each of two vendors. This “twin buy” approach 
insures that the large number of detectors required 
for the Kepler focal plane will be available even if one 
of the two vendors runs into difficulties. In April of 
this year all mechanical grade detectors were received. 
Minor difficulties were found, but all were acceptable. 
Delivery of the evaluation grade detectors is expected to 
start in May 2003. These will be tested to demonstrate 
that they correctly respond to electronics, have the 
appropriate sensitivity, and produce photometrically 
stable results.

Competition to build both the 0.95m Schmidt correc-
tor and the 1.4m primary mirror for the photometer 

Figure 1. Schematic diagram of Kepler photometer.
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optics was won by the Brashear Corporation in May 
2003. Delivery is expected in 2005. Negotiations for 
other long-lead items such as the Ka- and X-band trav-
elling-wave tube amplifiers (TWTAs) needed for the 
telemetry link are in progress.

The first major review of the mission, the systems re-
quirement review, will be held this October. In summa-
ry, the Kepler Mission is on schedule for a 2007 launch. 

PLANETARY RINGS

J. N. Cuzzi, I. Mosqueira, and F. Poulet

Saturn’s rings are one of the main targets of the up-
coming Cassini mission to Saturn. In addition, rings 
provide a unique dynamical laboratory for understand-
ing the properties of particle disks, which will help us 
understand the accretion of the planets. 

Models we have developed for the way in which grainy, 
icy surfaces (or “regoliths”) scatter light have been ap-
plied to model the composition of Saturn’s rings in a 
quantitative way for the first time. One very interesting 
result of this research is that the tendency for regolith 
grains to scatter light in the forward direction, deeper 
into the surface, has been greatly underestimated in the 
most popular previous models. This has led to overesti-
mates of the amounts of nonicy contaminants required 
to be mixed into these surfaces in order to explain 
their colors. Application of the new models to two 
“Centaurs”, or icy bodies orbiting between Saturn and 
Uranus, leads to Carbon/Water Ice mass ratios which 
are 30 times smaller than previously believed. These 
models, applied to Saturn’s rings, imply that only a few 
percent of the rings can be composed of materials other 
than water ice (i.e., amorphous Carbon; reddish “Tho-
lin”-like organics). In addition, modeling of newly ob-
tained, very high spectral resolution data from NASA’s 
Infrared Telescope Facility, in combination with these 
models, indicate that the Carbon is distributed differ-
ently on a microscopic level withni the regolith in some 
rings than in others—perhaps indicating that it was 
formed in situ by radiation darkening, or that it was 
more finely pulverized by meteoroid impacts. 

Other research has focussed on the origin of the 
regular satellites of the gas giant planets, which can be 
considered “miniature solar systems.’’ The research is 
unique in that it attempts to explain the regular satellite 
systems of Jupiter, Saturn and Uranus within the same 
general scheme, merely by varying local conditions 
such as temperature and gas density. It includes satel-
litesimal migration due to gas drag and tidal torques, 
and forms satellites by a combination of “particle-in-
a-box” binary accretion and drift augmented accretion 
in an extended, two-component planetary subnebula. 
The dense inner disk is set by the location to which the 
nearby, sun-orbiting gas and debris falls inward, while 
the much less dense outer disk extends to the location 
of the irregulars, and arises as a result of later infall 
from further distances.

This model forms Ganymede and Titan in the inner 
disk in one to ten thousand years and ten to a hundred 
thousand years respectively, and Callisto and Iapetus in 
the outer disk, both in about a million years. Callisto is 
formed out the volatile-rich condensables present in the 
extended, low density outer disk; its very long forma-
tion timescale is tied to the disk clearing time, which is 
the time it takes for gas drag to clear the circumplane-
tary disk of solids. The different formation material and 
timescale of Callisto relative to Ganymede may explain 
the high volatile content of Callisto compared to Gany-
mede, as well as Callisto’s partially differentiated state 
(in contrast, Ganymede is fully differentiated). Forma-
tion of Hyperion in resonance can be explained by the 
steep density gradient between the inner and outer 
disks, as had been suggested without context by some 
earlier studies. The model also makes several predictions 
about the composition and interior structure of Titan, 
Iapetus, the icy inner saturnian satellites and the rings, 
which may soon be tested by Cassini.

PARTICLE-GAS DYNAMICS IN THE 
PROTOPLANETARY NEBULA

J. N. Cuzzi, R.C. Hogan, S. S. Davis, and A. R. Dobrovolskis

“Primitive” or unmelted asteroids, from which the 
terrestrial planets were built, are represented in the me-
teorite record as a vast and complex set of “chondrites.” 



26

The interpretation of this unique look into the environ-
ment preceding planet formation has suffered for lack 
of a coherent theoretical context. Accretion of these 
primitive chondrites from small grains and mm-sized, 
melted silicate “chondrules” almost certainly occurred 
in the presence of gas, where subtle feedback effects 
occur between gas and particles.This research focusses 
on theoretical modeling of particle-gas interactions in 
turbulent nebula flows, and understanding meteorite 
properties in the light of these models. 

Building on past results in this line of research, Ames 
researchers have developed new analytical models 
of particle velocities in the early solar nebula. These 
models encapsulate complex physics into simple, but 
still rigorous, closed-form analytical expressions suitable 
for general use. One of the first uses of the new results 
has been as part of a new model of the formation and 
redistribution of one key component of meteorites—
the oldest, highest-temperature mineral condensates 
called Calcium-Aluminum-rich inclusions (CAIs). The 
models predict a significant enhancement of the inner 
nebula in silicates and Carbon for the first hundred 
thousand years of nebula history, due to drifting 
meter-sized rubble. This region, for this time, is likely 
to be the CAI formation zone. It is becoming evident 
that CAIs, found ubiquitously in primitive chondrites, 
are 1–3 million years older than the bulk of the other 
mineral objects in the same rock. It has long puzzled 
meteoriticists as to why these older fragments are not 
lost into the sun during this several million year hiatus. 
Our models show that turbulent diffusion of CAIs out-
wards in the nebula, subsequent to their formation, can 
explain their persistence for several million years. The 
enhancement of the formation zone in silicates explains 
the abundance of CAIs in meteorites quantitatively, and 
its enhancement in Carbon apparently helps explain 
their chemical and isotopic properties.

This year, Ames researchers also developed a novel 
cascade model for turbulence, which is capable of 
reproducing the statistical properties of fully 3D direct 
numerical simulations (DNS) and extending them to 
far higher Reynolds numbers. The goal of the model 
is to make quantitative estimates of the tendency of 
turbulent concentration of particles to produce plan-
etesimals with the observed properties. Our model is a 

two-phase, coupled cascade which calculates both par-
ticle concentration and local vorticity, with their spatial 
correlations included. These two properties determine 
the tendency towards gravitational instability of dense 
regions. Furthermore, the effects of particle mass load-
ing on the cascade—leading to a tendency for particle 
concentration to saturate at some high level - are mod-
eled using characteristic “partition rules” obtained from 
3D simulations of turbulence under mass loaded condi-
tions. The cascade code is running on Ames’ Origins 
2000 1024 node machine, and is capable of reaching 
Reynolds numbers of over a million with reasonable 
run times. For comparison, 3D DNS models struggle 
to reach Reynolds numbers of several thousand. 

THE PASCAL MARS SCOUT MISSION

Robert M. Haberle

The next major advance in our understanding of the 
meteorology and climate of Mars will come from 
in-situ measurements taken by a global network of 
long-lived landers. The National Research Council has 
recommended to NASA that in developing its long 
term science goals for Mars exploration, such a mission 
should be given high priority. During most of fiscal 
year 2002 Ames Research Center, along with industry 
partners Ball Aerospace, Lockheed Martin Advanced 
Technology Center, and ITT Aerotherm Corporation, 
developed a network mission concept to propose to 
NASA’s Mars Scout program. The mission is named 
after Blaise Pascal, the 17th century French scientist 
who pioneered measurements of atmospheric surface 
pressure, the most important meteorological parameter.

The Pascal mission delivers 18 small weather stations 
to the surface of Mars. The weather stations are distrib-
uted all around the planet so global scale phenomena 
can be sampled. Each station conducts meteorological 
measurements for at least 3 Mars years (a Mars year 
is equivalent to 687 Earth days). These measurements 
include pressure, temperature, sky opacity, wind speed, 
and water vapor concentration. A panoramic camera 
system periodically images the surrounding terrain to 
look for changes in the scene due to wind activity. In 
addition to these measurements, each weather station 
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measures the temperature structure of the atmosphere, 
and takes pictures of the ground during its descent to 
the surface. All operations are autonomous. Commu-
nications to and from the Earth takes place through 
a relay orbiter provided by NASA’s Mars Exploration 
Program or those from other countries. 

A carrier spacecraft begins releasing and targeting the 
probes to the surface of Mars when it is about 40 days 
from encountering the planet. The targeting and release 
sequence takes about 15 days to complete. Figure 1 
shows the entry, descent, and landing sequence. After 
releasing all the probes, the carrier spacecraft flys by 
Mars and begins to orbit the sun. Each probe enters the 
atmosphere at an altitude of approximately 150 km. 
The probes orient themselves so that the aeroshell is 
facing forward. The aeroshell provides thermal protec-
tion as the probes slow down in the atmosphere. At 10 
km altitude, a parachute is deployed to further slow 
the probes to approximately 25 meters per second (50 
miles per hour). Just before impact an airbag inflates 
and the parachute is jettisoned. After several bounces 
the probe comes to rest and the airbag is jettisoned. The 
camera system is then deployed and autonomous opera-
tions commence.

The Pascal mission seeks to understand the long-term 
global behavior of weather systems on Mars, how they 
interact with the surface, and how they control the 
planet’s climate system. The science objectives are (1) 
measure the seasonal cycles of dust, water vapor, and 
carbon dioxide, (2) measure the surface signature of 
the planet’s weather systems, (3) understand how these 

systems control the planet’s climate and modify its sur-
face, and (4) provide a basis for comparative planetary 
meteorology. The Pascal mission provides a long-term 
continuous presence on the surface of Mars not pos-
sible in previous missions.

THE CENTER FOR STAR FORMATION 
STUDIES

D. Hollenbach and K. R. Bell

The Center for Star Formation Studies, a consortium 
of scientists from the Space Science Division at Ames 
and the Astronomy Departments of the University 
of California at Berkeley and Santa Cruz, conducts a 
coordinated program of theoretical research on star and 
planet formation. The Center, under the directorship of 
D. Hollenbach (NASA Ames), supports postdoctoral 
fellows, senior visitors, and students, meets regularly at 
Ames to exchange ideas and to present informal semi-
nars on current research, hosts visits of outside scien-
tists, and conducts a week-long workshop on selected 
aspects of star and planet formation each summer.

In June 2002 the Center, along with the Institute of 
Astronomy and Astrophysics in Taiwan, co-hosted an 
international workshop entitled “Magnetohydrody-
namics, Radiation Diagnostics, and Chemistry of Star 
Formation,” which was held in Taiwan. The weeklong 
workshop had approximately 150 attendees, and 
included an invited talk by D. Hollenbach on “Molecu-
lar and Dust Emission from Disks Around Low Mass 
Stars”

One focus of the NASA Ames portion of the research 
work in the Center in 2002 involved the study of the 
ultraviolet radiation field in galaxies which is produced 
by relatively short-lived massive stars. Stars in galaxies 
form by the gravitational collapse of portions of giant 
molecular clouds (GMCs), and the star formation in 
these GMCs produces a range of stellar masses, includ-
ing massive stars with masses 10 to 100 times as mas-
sive as the Sun. Although these stars are less numerous 
than solar-type stars, they are incredibly luminous, 
nearly 105 times as luminous as the Sun, and they 
dominate the production of ultraviolet radiation in 

Figure 1. Pascal entry, descent, and landing (EDL) sequence.
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galaxies. The GMCs form out of an assemblage of more 
diffuse, cold atomic clouds in galaxies, and the amount 
of diffuse cold clouds is determined by the ultraviolet 
radiation field. If the ultraviolet radiation field is high, 
the heating caused by these energetic photons will 
warm the cold clouds to extremely high temperatures 
of 104 K and cause them to expand and dissipate. In 
this way, the rate of star formation in a galaxy is self-
regulated. If stars form too rapidly, there will be a large 
population of massive stars, a resultant high ultraviolet 
field, and a consequent destruction of the very clouds 
which lead to star formation. Hence, the star formation 
rate will be forced to slow down. On the other hand, 
if the star formation rate is low, the ultraviolet field is 
low, and there is little heating of the diffuse gas in the 
interstellar medium. In this case, the gas cools, forms 
copious cold clouds, which conglomerate to form 
GMCs, and which then ultimately lead to higher star 
formation rates.

Another focus of the Ames portion of the Center re-
search in 2002 involved a study of dust particles at the 
surface of a protoplanetary disk. Radiation from this 
layer produces infrared emission that reveals mineral-
ogical, chemical, and morphological properties of the 
dust. Long term monitoring of a dozen young star/disk 
systems has revealed several whose infrared emission 
changes dramatically from month to month. This 
unexpected short term variability may mean that both 
dust population and disk structure are evolving very 
rapidly in the planet-forming regions of young Sun-like 
systems.

The theoretical models of the Center have been used to 
interpret observational data from such NASA facilities 
as the Infrared Telescope Facility (IRTF), the Infrared 
Astronomical Observatory (IRAS), the Hubble Space 
Telescope (HST), and the Infrared Space Observatory 
(ISO, a European space telescope with NASA collabo-
ration), as well as from numerous ground-based radio 
and optical telescopes. In addition, they have been used 
to determine requirements on future missions such as 
the Stratospheric Observatory for Infrared Astronomy 
(SOFIA) and the Space Infrared Telescope Facility 
(SIRTF).

HEARING THE LESSONS BROWN DWARFS 
TEACH 

Mark Marley, Richard Freedman

One of the central goals for NASA’s Space Science 
Enterprise is the direct detection of extrasolar planets. 
Jupiter-like planets are an easier target than terrestrial 
planets, of course, and as such will serve as a step-
ping stone on the path to finding “pale blue dots,” or 
extrasolar Earth-like planets. Even obtaining the first 
image of an extrasolar Jupiter will require large ground 
or space based telescopes, a new generation of instru-
ments, and an optimal strategy. In fact one of the key 
science goals of the James Webb Space Telescope is 
to directly image extrasolar giant planets in the solar 
neighborhood. The strategy is to image these planets at 
the favorable wavelength of five microns, where models 
predict the planets to be particularly bright and the 
glare from their primary star to be less troublesome.

Although no giant planets have yet been imaged, hun-
dreds of brown dwarfs have been found. These objects, 
which are more massive than planets, but less massive 
than stars, serve as pathfinders to the extrasolar giant 
planets. They have roughly the same radii, the same 
composition, and the same atmospheric temperature 
conditions as, at least some, extrasolar planets. As such 
they provide test cases which illuminate the optimal 
observing strategy.

At the conditions prevalent in cool brown dwarf 
atmospheres, chemical equilibrium arguments suggest 
that most carbon atoms should be found in the form of 
methane, CH4. Methane, along with water and ammo-
nia, the other major atmospheric constituents, absorb 
relatively little near five microns. This absorption 
minimum is responsible for the opening of the “win-
dow” in this spectral region. The window allows bright 
flux from deeper, hotter regions of the atmosphere to 
escape to space. Thus the prediction that extrasolar gi-
ant planets should be bright at five microns. However, 
a key result from the past year of observations and in-
terpretation of brown dwarfs has been that these objects 
are dimmer than predicted by models in this crucial 
spectral region.

The most likely explanation for this unexpected 
diminution in brightness is an enhanced abundance of 
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carbon monoxide, CO, in these atmospheres. Although 
methane is the favored reservoir of carbon at low 
temperatures high in the atmosphere, CO is favored 
deeper in the atmosphere. Strong vertical flows in the 
atmosphere can transport CO from the deep, unobserv-
able, regions up to the observable atmosphere. Once 
there the tendency of carbon monoxide to absorb near 
five microns muffles the otherwise bright emitted flux. 
A similar phenomenon is seen at Jupiter where CO is 
detectable in this same spectral region.

The fact that some cool brown dwarfs are substantially 
(by up to 60%) dimmer than expected implies that 
this same phenomenon may be ubiquitous, and also 
affects the atmosphere of extrasolar giant planets. If so 
the planets will be dimmer and more difficult to detect 
than had previously been expected.

Continuing research will focus on better understanding 
the reason for the flux diminution in brown dwarfs and 
providing guidance for efforts to directly detect extraso-
lar giant planets.

CLUSTER DETECTION IN GALAXY SURVEYS

Jeffrey D. Scargle, Christopher E. Henze, Creon Levit, 
Michael Way, Bradley Jackson

This collaboration developed a novel way to detect and 
characterize structure in three dimensional point data, 
and applied the methodology to analyze large new data 
sets from astronomical surveys of the constituents of 
the Universe. This application resulted in an objec-
tive procedure for identifying galaxy clusters without 
imposing assumptions about cluster shape, and with-
out fixing ahead of time the number of clusters - thus 
removing limitation affecting most previous cluster 
detection studies.

The procedure is based on a 3D segmentation model, 
in which the data space is partitioned into subregions 
such that the point density is well modeled as being 
constant over each such subregion. The computational 
procedure is to find the optimum such partition, mean-
ing the one that maximizes a goodness of fit quantity. 
The Bayesian posterior probability of the model, given 
the point data, was adopted as this fitness measure. 

The complexity of the space of possible models was 
reduced by positing that the partition elements consist 
of finite collections of data cells - that is, regions of the 
data space closest to a given data point, the so-called 
Voronoi tessellation of the space. This excellent ap-
proximation reduces the size of the search space from 
highly infinite to a finite one—albeit exponential in the 
number of data points. 

The solution to this combinatorial optimization 
problem is obtained by a simple adaptation to higher 
dimensionality of an exact 1D algorithm developed in 
an earlier phase of the work. The adaptation is based on 
a mathematical result, called the intermediate density 
principle—which allows the data cells in any dimen-
sional space to be ordered by cell volume and then 
treated as a 1D sequence. The final algorithm finds the 
global optimum partition of the data in time propora-
tional to the square of the number of data points.

The algorithm was applied to the early release data from 
the Sloan Digital Sky Survey (www.sdss.org). A small 
sample result is shown in the first figure. The raw data 
consist of the positions on the sky and redshifts of a 

Fig. 1: Results of the segmentation analysis of a small cube of data from 
the Sloan Digital Sky Survey Early Release Data. The color scale indicates 
density of galaxies per unit volume of space, with red being the highest 
density, then yellow, green, and light blue, with violet being the least 
dense (and roughly representing a uniform background of non-clustered 
galaxies on which the other structures are superimposed.
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large sample of galaxies. Converting the redshifts to 
distances, using the Hubble relationship, yields a true 
3D distribtion of tens of thousands (ultimately millions 
when the survey is complete) of galaxies. The optimal 
partition in to collections (called blocks) of 3D Voronoi 
cells, colored according to the spatial density of galaxies 
averaged over each block, are shown in the figure. We 
are experimenting with scientific visualization tech-
niques to render the true distribution more compre-
hensible, including the use of the NAS HyperWall to 
explicate correlations between the spatial, spectral, color 
and brightness data available for each galaxy. 

THE CHEMISTRY AND MINERALOGY OF 
ATACAMA DESERT SOILS

Brad Sutter

The Atacama Desert of northern Chile is the driest 
desert in the world. While Mars is vastly more dry and 
cold than the Atacama, the Atacama environment may 
be one of the best terrestrial Mars analog environments 
accessible to researchers. The objective of this work was 
to examine the soils of the hyper-arid Atacama Desert 
to provide insight as to what soil properties maybe 
found on Mars.

Three soils were examined that occur along a south to 
north transect (Copiapo —> Altimira —> Yungay) in the 
Atacama that coincides with decreasing moisture levels 
(~15mm to ~2 mm yr –1, south to north). Total chemi-
cal analyses were used to calculate strain (i.e. volume 
change) and the open-system mass-transport function. 
The Yungay and Altimira soils expanded over 400% 
while the Copiapo soil collapsed by as much as 48%. 
The expansion of the Yungay and Altimira soils may 
be the result of the additions of sulfate, nitrate, and 
chloride from aerosol inputs from wind redistribution 
of playa salts, volcanic activity, and marine influences. 
Apparently, the higher level of precipitation at the 
Copiapo site caused leeching, and the sulfate, nitrate, 
and chloride additions could not accumulate to levels 
high enough, thus the Copiapo soil collapsed. The lack 
of significant precipitation at the Yungay and Altimira 
soils allows for additions of sulfate, nitrate, and chloride 
to remain, which resulted in soil expansion.

The results of this work suggest that there is a critical 
water balance for soil formation (precipitation – evapo-
transpiration) at which the long-term accumulation of 
atmospherically-derived elements (e.g., sulfate, nitrate, 
and chloride) exceeds weathering losses, and landscapes 
undergo continual dilation (e.g., Yungay soil) as opposed 
to collapse (e.g, Copiapo soil). The critical climatic cutoff 
point is likely to be quite arid. In the Atacama Desert, 
the crossover point between the accretion vs. the loss of 
soluble atmospheric inputs such as sulfate is somewhere 
between 2 and 15 mm of precipitation per year. Elevated 
levels of sulfur and chlorine found at the Viking and 
Pathfinder sites suggesting aerosol input coupled with 
the extreme aridity of Mars indicates that Martian soils 
may have undergone volumetric expansion similar to 
what has occurred in the Atacama.

Currently, the rare earth elements of the above soils 
as well as soil chemical data just received from soil 
horizons deeper than what was discussed above are 
being examined to provide more insight into the soil 
expansion and contraction properties of Atacama soils. 
Future work will examine Atacama soils developed on 
volcanic materials farther from the coast in an effort to 
obtain a better analog to Mars soils. 

HEAT FLOW AND DEGASSING IN MANTLE 
CONVECTION

Kevin Zahnle, Norman H. Sleep, and Francis W. H. Nimmo

That the Earth’s mantle convects is not in doubt. But 
whether it convects as a whole, in layers, or in some more 
complex pattern is a matter of debate. In whole mantle 
convection the continents and atmosphere are extracted 
from the mantle as a whole. The remaining “depleted” 
mantle is to first approximation statistically well-mixed 
and fairly sampled by volcanism. More subtle views of 
whole mantle convection regard the mantle as a poorly 
stirred cauldren of primitive materials, depleted materi-
als, and convectively-entrained materials from the surface 
(e.g. subducted continental materials and subducted 
MORB) and from the core-mantle boundary. In layered 
convection the mantle convects in two layers, which may 
be loosely termed “upper mantle” and “lower mantle.” By 
construction the lower mantle is not easily depleted and 
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does not easily degas. In traditional layered convection, 
the layering is identified with and possibly caused by (or 
at least modulated by) the solid state phase transition 
that occurs 660 km below the surface. More modern ver-
sions of layered convection move the barrier to mixing to 
much greater depths and have asserted that composition-
al differences between upper and lower mantle materials 
can maintain distinctive unmixed mantle reservoirs.

A great many geophysical, seismological, and geo-
chemical arguments have been made to all sides of this 
debate that do not need to be summarized here. Suffice 
it to say that seismological evidence against layering at 
660 km, the traditional boundary between the upper 
and lower mantle, is strong, yet good indirect argu-
ments for layering remain. One such argument involves 
a heat flow paradox: Earth seems to be cooling much 
faster than it is being heated by the decay of radioac-
tive elements. (The important radioactive elements are 
uranium, thorium, and a rare isotope of potassium.) 
Such a mismatch is not expected in conventional 
whole mantle convection, but it is reasonable in layered 
convection, because the lower mantle can better store 
old heat. Second, radioactive decay produces, among 
other products, the inert gases helium and argon. The 
amount of argon in the atmosphere and the amount 
of helium currently being degassed from the Earth’s 
mantle are both smaller than expected of a well-mixed 
mantle. The mantle helium flux in particular agrees 
with what is expected from a small isolated upper man-
tle. A well-known but ambiguous third argument for 
layering exploits the relative fluxes of radiogenic (4He) 
and nonradiogenic (3He) helium. In this argument rela-
tively high 3He/4He ratios associated with Ocean Island 
Basalts (OIBs) are attributed to high 3He/4He mate-
rial from the lower mantle. The idea is that the lower 
mantle is less degassed, and so retains a relatively higher 
amount of the nonradiogenic 3He. This is something 
of a pyrrhic victory given that the quantity of helium 
in OIBs is smaller, and sometimes much smaller, than 
in the more voluminous Mid-Ocean Ridge Basalts 
(MORBs). The observed relationship is opposite what 
one expects from a helium-rich lower mantle source.

The failure to establish the existence of a material 
boundary at 660 km has led layering’s advocates to con-
sider alternative topologies. These are loosely lumped 

together under the label of “lava lamp layering.” The 
key features of these newer models is that the upper 
mantle is made bigger and deeper, the lower mantle 
shrinks accordingly, and the distinction is maintained 
by modest compositional differences. (The lava lamp 
itself is a misleading but established analogy, mislead-
ing because the lava lamp comprises immiscible fluids 
but the mantle does not.) The new layering represents 
something of a compromise. It retains in diluted form 
most of the advantages and the disadvantages of both of 
its antecedents. 

We construct self-consistent degassing and thermal 
history models for Earth in whole mantle and lava lamp 
style convection. Whole mantle solutions for argon, 
helium, CO2, and the temperature of the Archean 
upper mantle can be obtained only if (i) helium and 
argon are some 4–6 times more compatible with the 
mantle (i.e. more readily retained by the mantle during 
magmatic processes) than is typical of incompatible 
“elements” such as CO2; and (ii) heat flow has been 
roughly constant over geologic history. The sense of 
paradox in whole mantle convection stems from (i) the 
presumption that a rare inert element ought to degas 
as agressively as an extremely incompatible element; 
and (ii) the expectation, based on applying the con-
ventional equations of parameterized convection to 
plate tectonics, that heat flow is strongly coupled to the 
mantle’s temperature in a way that guarantees that heat 
flow tightly tracks the heating provided by the decay 
of radioactive elements. Neither of these presump-
tions is founded well enough to rule out whole mantle 
convection. The newer versions of layered convection, 
in which the depleted (upper) mantle comprises ~60% 
of the whole, may seem better. These allow higher 
noble gas degassing efficiencies, although still less 
than half that of CO2. By setting the ratio of upper to 
lower mantle to 60:40, the new layering gives self-con-
sistent abundances for Th, U, and K in the continents, 
MORBs, and lower mantle. This addresses a problem 
that whole mantle convection can address only by 
making recourse to heterogeneities. As in whole mantle 
convection, the new layered convection requires that heat 
loss be a weak function of mantle temperature. This is 
a paradox that apparently cannot be resolved by mantle 
topology alone but may instead require a more subtle 
understanding of how plate tectonics actually work.





33

Th e Branch’s research focuses on the advancement of the scientifi c 
understanding of the origin and distribution of life by conducting 
research on the cosmic history of biogenic compounds, prebiotic 
evolution, and the early evolution of life. Th is is accomplished 
via laboratory experiments, theoretical studies/computational 
modeling, and fi eld investigations. Branch personnel are also 
involved in the development of fl ight instruments, experiments, 
and small mission defi nition with particular emphasis being placed 
on studies of Mars and the development of instrumentation for 
martian fl ight missions. Several Branch scientists are part of a 
task module that is a component of the Ames membership in 
the Astrobiology Institute. Branch scientists provide expertise in 
exobiology, astrobiology, planetary protec-tion, and other areas of 
planetary science to NASA Headquarters and external review and 
advisory panels, and some serve as editors and associate editors of 
scientifi c journals.

Exobiology studies includes the history, distribution, and chemistry 
of biogenic elements in the solar system; prebiotic chemical 
evolution and the origin of life; and the history of Earth’s early 
biosphere as recorded in microorganisms and ancient rocks. Th e 
research is conducted both on Earth and in space. Th e Branch 
also serves as the center of expertise within the agency for issues 
of planetary protection. As the agency lead center in exobiology, 
Branch exobiologists exercise a leadership role in NASA’s 
Exobiology Program through program planning, performance 
reviews, advisory services to related NASA programs, and external 
relations.

Exobiology Branch
Overview

David F. Blake

Chief, Exobiology Branch
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DEFINITIVE MINERALOGICAL ANALYSIS 
ON MARS

David Blake and Philippe Sarrazin

The search for evidence of life, prebiotic chemistry or 
volatiles on Mars requires the identification of rock 
types that could have preserved these. Anything older 
than a few tens of thousands of years will either be a 
rock, or will only be interpretable in the context of the 
rocks that contain it. 

The key role that definitive mineralogy plays is a con-
sequence of the fact that minerals are thermodynamic 
phases, having known and specific ranges of tempera-
ture, pressure and composition within which they are 
stable. More than simple compositional analysis, defini-
tive mineralogical analysis can provide information 
about pressure/temperature conditions of formation, 
past climate, water activity, the presence of biologically 
significant gases and the like.

Mineralogical identification—the determination of 
crystal structure—is a critical component of Mars 
Astrobiological missions. Definitive mineralogical 
instruments have never been deployed on Mars, and 
as a result, not a single rock type or mineral has been 
identified with certainty.

Minerals are defined as unique structural and compo-
sitional phases that occur naturally. There are about 
15,000 minerals that have been described on Earth. 
There are likely many minerals yet undiscovered on 
Earth, and likewise on Mars. If an unknown phase 
is identified on Mars, it can be fully characterized by 

structural (X-ray Diffraction, XRD) and elemental 
(X-ray Fluorescence, XRF) analysis without recourse to 
other data because XRD relies on the first principles of 
atomic arrangement for its determinations. Diffraction 
is the principal means of identification and character-
ization of minerals on Earth. 

The CheMin II XRD/XRF instrument (so called 
because it is capable of CHEmical and MINeralogi-
cal analysis) is capable of quantitative mineralogical 
analysis. The original prototype has been modified (and 
made portable) by replacing the Philips-Norelco tube 
tower with an Oxford Instruments small-focus X-ray 
source (figure 1). In the current version, the small-focus 
source (70 µm diameter) and a 30 µm final aperture 
yield a beam diameter at the sample of ~100µm. A 
wide variety of minerals and rocks has been analyzed 
utilizing 40 KV accelerating voltage and 0.25 micro-
amps beam current (10 watts). Interpretable patterns 
of single minerals can be obtained in less than an hour 
and quantifiable patterns of complex rocks can be ob-
tained in a few hours. 

Quantitative mineralogical analyses have been ob-
tained for a variety of minerals using the CheMin II 
prototype. Refinements have been made of apophylite 
(a zeolite), limestone, limestone-evaporite, San Carlos 
olivine, the Mars meteorite Zagami and many others. 
Calculated cell parameters for the San Carlos olivine 
from CheMin data are 4.76, 10.24, and 5.99 Å, yield-
ing a composition of Fo90 - Fo95 (figure 2). 

Figure 2: Diffractogram of CheMin olivine data (red) vs. positions & intensi-
ties of forsterite standard (blue triangles)Figure 1: CheMin II instrument
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A third prototype (CheMin III) is under construction 
that will utilize a small-focus (45 µm) Co X-ray source, 
an ambient pressure sample insertion mechanism, and 
an air-cooled, vacuum sealed, 1K X 1K deep-depleted 
CCD. Deep-depletion will increase the quantum ef-
ficiency (QE) for diffracted X-ray detection from 0.05 
to nearly 0.50, yielding a 10-fold increase in count rate. 
The instrument will be operable from a laptop com-
puter running LabviewTM software.

CARBON ISOTOPIC FRACTIONATION 
ASSOCIATED WITH CYANOBACTERIAL 
BIOMARKERS: 2-METHYLHOPANOIDS 
AND METHYL-BRANCHED ALKANES.

Linda L. Jahnke, Tsegereda Embaye and Roger E. 
Summons

Biomarker analysis of ancient organic sediments has 
demonstrated the dominance of cyanobacterial ecosys-
tems going back in geological time to 2700 Ma. The 
presence of 2-methyl-hopanoids and methyl-branched 
alkanes serve as biomarkers for this important group 
of oxygenic photosynthetic bacteria both in geo-
logical samples and in contemporary environments. 
Knowledge of the molecular structures and the carbon 
isotopic compositions of individual biomarkers might 
allow recognition of source organisms and environmen-
tal conditions. Cyanobacteria have been the significant 
primary producers throughout most of Earth’s history, 
but little is known about the molecular diversity of 
their lipid biomarkers or the effects of carbon isotopic 
fractionations associated with the biosynthesis. We 
have focussed our study on several pure cultures which 
synthesize a variety of branched alkanes, and 2-meth-
ylhopanoids. Two of these cyanobacterial cultures, 
Chlorogloeopsis fritschii and Phormidium luridum, have 
been obtained from culture collections. Both organisms 
contain several distinct cyanobacterial biomarker lipids 
(Fig. 1). 

Our work has also involved analysis of a collection of 
natural microbial mats constructed by fine filamentous 
cyanobacteria, the coniform mats found in the Midway 
Geyser Basin of Yellowstone National Park. These mats 
are considered the best analog for the fossil conophy-
tons, a type of stromatolite dating back 3450 Ma.  

From these mats, other Phormidium cyanobacteria have 
been isolated, and their phylogenetic relatedness and 
lipid biomarkers characterized. It is our hope that this 
study will elaborate links between Phormidium and 
conophyton stromatolites.

Pure culture studies: Cyanobacteria were grown in feed-
batch cultures with a constant gas flow, either high CO2 
(generally 1% v/v) or atmospheric air. Little difference 
was observed for 13C-discrimination associated with 
growth on 1% CO2 for three individual cyanobacteria, 
with biomass ranging from 21.6 to 22.4‰. The bacte-
riohopanepolyol (BHP) was generally depleted relative 
to biomass by 4.0 to 7.4‰ with 2-methyl-BHP often 
somewhat heavier than non-methylated BHP by 2 to 
3‰. This relationship did not appear to depend on the 
level of CO2 provided to the culture for growth.

The isotopic composition of alkanes was more complex 
and depended on carbon chain length and methyl-
branching. Generally for each individual cyanobacte-
rium, longer chain and methylated alkanes were heavier 

Fig. 1. Lipid biomarkers isolated from Chlorogloeopsis fritschii. Branched 
alkanes 4-methyl-octadecane (I) and 4,14-dimethyloctadecane (II). 
Isoprenoid lipids represented by chlorophyll derived phytol (III) and BHP 
derived 2-methylhopanol (IV).
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than their shorter, normal chain counterparts. In C. 
fritschii grown with 1% CO2, n-C17 was depleted by 
12.1‰ relative to biomass, while the 4-methyl- and 3-
methylheptadecanes were 8.7 and 8.0‰, and the 4,14-
dimethyl- and 3,14-dimethylheptadecanes were 2.4 
and 2.9‰, respectively. A 5-methyl-octadecane present 
in low abundance (~3% of alkanes) was also relatively 
depleted, particularly in relation to monomethyl hep-
tadecanes (Fig. 2). Similarly, in an air sparged P. luri-
dum, n-C17 was depleted by 10.5‰ relative to biomass, 
and the 7-methyl- and 7,11-dimethylheptadecanes by 
5.6 and 4.5‰, respectively.

The biomarker composition of the cyanobacteria isolat-
ed from Yellowstone coniform mats varied considerably. 
These cyanobacteria were predominately of the Phor-
midium-type and formed three distinct groups based 
both on lipid biomarker composition and 16S rRNA 
sequence similarities. 16S rRNA gene sequence analysis 
indicated that the three groups were closely related to 
one another and to P. luridum. Although these Phor-
midium groups were closely related, lipid composition 
varied widely. The group represented by Phormidium 
RCO synthesized only straight chain alkanes, primar-
ily n-C18 and n-C19, and no hopanoids. Phormidium 
RCG, which represented the second group of isolates, 
contained n-C17 and large amounts of methyl-branched 
alkanes (7-methyl- and 7,11-dimethylheptadecanes) 
similar to those found in P. luridum, but only a C32 
BHP (as IV° Fig 1). The biomarker composition of the 
last group, represented by Phormidium OSS4, was the 
most complex. The major BHPs were a 2-methyl-C31 
and a desmethyl-C31 with lesser amounts of the C32 
homologs. The alkanes extended from n-C16 to n-C22 
with a variety of methyl-branched alkanes. The alkane 
composition of Phormidium OSS4 was also affected by 
growth temperature. In the 30 to 45°C range, mid-
chain methyl-alkanes were the major constituents of 
the hydrocarbon fraction. A small amount of dimethyl-
alkane was also present, primarily in a culture grown at 
30°C. The straight chain and 2-methylalkanes increased 
with higher growth temperatures and were dominant 
in cells grown in the 50 and 55°C range. The isotopic 
relationships among biomarkers were generally similar 
to those described above. In one culture grown at 55°C, 
the fractionation factor (εbiomarker) for individual alkanes 

relative to biomass ranged from 8.1‰ for n-C17 to 
-0.6‰ for n-C21 and 2.1‰ for 2-methyloctadecane to 
–0.6‰ for 2-methylicosane. There was also a sugges-
tion of increased fractionation associated with alkane 
synthesis as the growth temperature was increased with 
an overall e value obtained by mass balance of 5.5‰ 
for a 30°C culture and 2.1‰ for a 55°C culture. 

Environmental studies: The biomarker composition 
of the coniform mats varied considerably depending 
on the environmental setting, but generally contained 
both 2-methyl-BHP, C31 and C32 types, and methyl-
branched alkanes, primarily the 7-methyl-heptadecane 
and 7,11-dimethylheptadecane. As with pure culture 
studies, the monomethyls- were somewhat more 
depleted (ε = ~11‰) relative to total organic carbon 
(TOC) than the dimethyls (ε = ~9‰). Isoprenoid 
lipids were generally more enriched in 13C than alkanes. 
Values for chlorophyll associated phytols and the des-
methylhopanols (C31 and C32) were both generally in 
the 5 to 6‰ range. As with pure cultures, the 2-meth-
ylhopanols were 1 to 2‰ heavier than their desmethyl 
homologues. 

Fig. 2. Carbon isotopic composition of lipid biomarkers isolated from C. 
fritschii grown with 1% CO2 where the fractionation factor, εbiomarker , is 
calculated for the lipid components relative to biomass and = (a -1)1000. 
Normal (n -17) heptadecane and 5-methyloctadecane (Me -18). Numerals 
refer to structures in Fig. 1, IV° is the desmethyl equivalent of IV, a C32 
hopanol. 
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PENNING IONIZATION ELECTRON SPEC-
TROSCOPY (PIES)

Daniel R. Kojiro, Valery A. Sheverev, Nikolai A. Khromov, 
and Norishige Takeuchi 

Exobiology flight experiments require highly sensi-
tive instrumentation for the in situ analyses of volatile 
chemical species that occur in the atmospheres and 
surfaces of various bodies within the solar system. The 
complex mixtures encountered place a heavy burden 
on the analytical instrumentation to detect and identify 
all species present. The minimal resources available on-
board for such missions mandate that the instruments 
provide maximum analytical capabilities with minimal 
requirements of volume, weight and consumables. 
The objective of this research is to develop analytical 
technologies for the analysis of complex extraterrestrial 
mixtures of interest to Astrobiology. These are often 
complex mixtures with many components ranging in 
concentration from a few parts-per-billion to a few per 
cent. Typical analytical requirements are:

• Universal response

• Part per billion sensitivity

• Response range of over 106

• Instantaneous recovery time (quick analyses).

Ideally, the instrument should be able to meet these 
analytical requirements while operating under severely 
restricted conditions. It should be:

• Rugged

• Tiny

• Use little or no power for operation or for 
maintenance

• Require few consumables (carrier gas).

A new technique being investigated is Penning Ioniza-
tion Electron Spectroscopy (PIES). PIES measures the 
energy of electrons released from sample molecules 
ionized by collisions with metastable helium (Penning 
Ionization). From that measurement, the ionization 
potential of the sample molecule is determined and is 
used to identify the molecule. PIES has the potential of 
providing both sample detection and direct molecular 
identification of a gaseous species.

THE ORIGIN AND EARLY EVOLUTION OF 
MEMBRANE PROTEINS

Andrew Pohorille and Michael Wilson

The formation of protocells—membrane enclosed 
structures endowed with ubiquitous cellular 
functions—was a central step in evolution from 
inanimate to animate matter. Many essential cellular 
functions are performed by proteins embedded in 
membranes. These proteins or protein complexes are 
among the largest macromolecular structures found 
in cells and their mode of action is often complicated 
and subtle. This creates a difficulty for explaining the 
origin of cells. If functions of membrane proteins 
were essential to the existence of even the simplest 
cell it must be explained how they could have been 
performed, even less efficiently or selectively, by simple 
precursors of proteins - peptides.

On the basis of a series of detailed molecular dynam-
ics computer simulations it was demonstrated that the 
emergence of membrane proteins might have been 
quite feasible. Specifically, the stability of monomers 
and dimers of a peptide built of leucine (L) and serine 
(S) amino acids in membrane-mimetic system was 
studied. The sequence of this peptide was (LSLLLSL)3. 
Also the transmembrane aggregate of four identical a-

Figure 1 is a PIES spectrum of a mixture of N2 and CO, (both molecular 
weight 28). The peak at 14.4 electron volts is from ionization from two 
metastable helium atoms. The primary N2 peak is at 4.2 electron volts and 
for CO the primary peak is at 5.8 electron volts. Although both gases have 
the same molecular weight, they produce separate identifying peaks in the 
PIES spectrum.
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helices that forms an efficient and selective voltage-gat-
ed proton channel was investigated. Finally, a peptide 
that forms sequence-specific dimers was studied.

Many peptides are attracted to water-membrane inter-
faces. Once at the interface, most nonpolar peptides 
spontaneously fold to (-helices. Whenever the sequence 
permits, peptides that contain both polar and nonpolar 
amino also adopt helical structures, in which polar and 
nonpolar amino acid side chains are immersed in water 
and membrane, respectively. The formation of such 
helices is primarily governed by the sequence of polar 
and nonpolar amino acids. Considering that specific 
identity of side chains is less important, the existence 
of helical peptides at interfaces of protocells should not 
have been rare.

Helical peptides located parallel to the interface could 
insert into the membrane and adopt a transmembrane 
conformation. However, insertion of a single helix is 
associated with a positive (unfavorable) free energy 
change. This is because polar groups in the peptide, 

which remain partially immersed in water at the inter-
face, become completely dehydrated. However, the loss 
of free energy is smaller for helices than for other struc-
tures because polar groups in the peptide backbone are 
involved in intramolecular hydrogen bonding.

The unfavorable free energy of association can be 
regained by spontaneous association of peptides in the 
membrane. The first step in this process is the forma-
tion of dimers, although the most common structures 
involve aggregates of 4–7 helices. The helices could 
readily arrange themselves such that they formed pores 
capable of transporting ions and small molecules across 
membranes. Stability of transmembrane aggregates of 
simple proteins is often only marginal and, therefore, 
it can be regulated by environmental conditions, such 
as external electric fields, specific nature of membrane-
forming molecules or small changes in the sequence of 
amino acids. This ability to respond to environmental 
signals might have led to the earliest, although quite 
imprecise, regulation of transmembrane functions.

A key step in the earliest evolution of membrane 
proteins was the emergence of selectivity for spe-
cific substrates. Many simple channels could achieve 
selectivity through placing one or only a few properly 
chosen amino acids in certain positions along the chan-
nel, which acted as filters or gates. From the evolution-
ary standpoint it is a convenient solution because it 
does not require imposing conditions on the whole 
sequence.

Many further steps were required before the simple 
aggregates of transmembrane peptides reached the 
structural and functional complexity, diversity and 
refinement of contemporary membrane proteins. The 
helices became connected by extra-membrane linkers 
to stabilize them inside the membrane. The resulting 
proteins aggregated to larger, higher-order structures. 
Protein sequences became optimized for highly spe-
cific functions. Finally, membrane proteins acquired 
large, water-soluble domains, which play regulatory 
role or help to supply energy for active transport. These 
evolutionary advancements opened the doors for the 
emergence of multicellular organisms.

Figure – the (LSLLLSL)3 peptide in the transmembrane orientation. The 
membrane-forming molecules located between two lamellae of water (in 
yellow) was removed for clarity.
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CARBON NANOTUBE FIELD EMISSION 
X-RAY TUBE

Philippe Sarrazin, Lance Delzeit, David Blake

ARC is developing an X-ray tube for CheMin, a 
mineralogical instrument for planetary exploration. 
This instrument combines X-ray diffraction and X-ray 
fluorescence techniques to provide definitive miner-
alogical analyses onboard a lander or a rover. Space 
deployment of this instrument requires an X-ray tube 
that is miniature in size, low-power, and microfocused, 
meaning that the X-rays are generated from a very small 
spot (10–50 µm in size). Such an X-ray tube is not 
readily available.

An X-ray tube is composed of an electron-source facing 
a metallic target inside a vacuum enclosure. Electrons 
emitted by the source are accelerated towards the target 
by high-voltage. The collision of high-speed electrons 
with the target leads to the emission of X-ray radiation 
characteristic of the target material. The thermionic 
sources (hot filament) commonly used as electron 
sources (in conventional X-ray tubes) cause major 
problems for the deployment of a miniature X-ray 
tube in space: poor efficiency, heat generation, limited 
focusing capability. An alternative method for emit-
ting electrons is field emission which is based on the 
extraction of electrons from sharp tips by an electric 
field. Field emitters can potentially improve efficiency, 
stability and reliability of miniature X-ray sources, 
however, until recently, no field emitter have shown the 
appropriate characteristics for X-ray tube application. 
Miniature microfocused x-ray tubes require very small 
emitters (10–100 µm in diameter) that are yet capable 
of delivering sustainable currents of about 100 µA. The 
work presented here is the development of a new type 
of electron-source for miniature X-ray tubes using field 
emission from carbon nanotubes (CNTs).

CNTs are the sharpest objects known, are very good 
conductors of electricity and are mechanically and 
chemically extremely robust. This combination of 
properties makes them very good candidates for field 
emission. CNT emitters were fabricated using thermal 
Chemical Vapor Deposition (CVD) techniques devel-
oped by Ames (figure 1). A major effort was dedicated 
to the adaptation of the CNT growth processes to 

different types of substrate materials. Electron emission 
properties of multiwall nanotube films of various densi-
ties were characterized using an instrument specifically 
developed for this project. Very good emission char-
acteristics were measured with turn-on fields of 1.5 to 
2 V µm–1, and high current densities (figure 2). With 
optimized CNT density and very small emitters, out-
standing sustainable current densities above 1 A.cm–2 
under moderate electric field (7–10 V µm–1) have been 
measured. An industrial partner, Oxford XRT Inc., has 
implemented these cathodes in miniature X-ray tubes 
and is conducting performance tests. An X-ray tube is 
being submitted to a life-time test and has been oper-

Figure 1: Carbon nanotube film obtained by thermal CVD.

Figure 2: Example of field emission from a CNT film; main: applied electric 
field vs current density; insert: same data in a Fowler-Nordheim plot 
characteristic of field emission.
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ated continuously for several months without any sign 
of deterioration. Current efforts are oriented towards 
the optimization of the emitter fabrication to produce 
even smaller electron-source with improved current 
density and stability.

Figure 3: CNT based miniature X-ray tube built by Oxford XRT Inc.
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